logs-analyzer/signoz/pkg/query-service/app/metrics/v4/cumulative/timeseries.go
2024-09-02 22:47:30 +03:00

214 lines
11 KiB
Go

package cumulative
import (
"fmt"
"go.signoz.io/signoz/pkg/query-service/app/metrics/v4/helpers"
"go.signoz.io/signoz/pkg/query-service/constants"
v3 "go.signoz.io/signoz/pkg/query-service/model/v3"
"go.signoz.io/signoz/pkg/query-service/utils"
)
// See https://clickhouse.com/docs/en/sql-reference/window-functions for more details on `lagInFrame` function
//
// Calculating the rate of change of a metric is a common use case.
// Requests and errors are two examples of metrics that are often expressed as a rate of change.
// The rate of change is the difference between the current value and the previous value divided by
// the time difference between the current and previous values (i.e. the time interval).
//
// The value of a cumulative counter always increases. However, the rate of change can be negative
// if the value decreases between two samples. This can happen if the counter is reset when the
// application restarts or if the counter is reset manually. In this case, the rate of change is
// not meaningful and should be ignored.
//
// The condition `(per_series_value - lagInFrame(per_series_value, 1, 0) OVER rate_window) < 0`
// checks if the rate of change is negative. If it is negative, the value is replaced with `nan`.
//
// The condition `ts - lagInFrame(ts, 1, toDate('1970-01-01')) OVER rate_window) >= 86400` checks
// if the time difference between the current and previous values is greater than or equal to 1 day.
// The first sample of a metric is always `nan` because there is no previous value to compare it to.
// When the first sample is encountered, the previous value for the time is set to default i.e `1970-01-01`.
// Since any difference between the first sample timestamp and the previous value timestamp will be
// greater than or equal to 1 day, the rate of change for the first sample will be `nan`.
//
// If neither of the above conditions are true, the rate of change is calculated as
// `(per_series_value - lagInFrame(per_series_value, 1, 0) OVER rate_window) / (ts - lagInFrame(ts, 1, toDate('1970-01-01')) OVER rate_window)`
// where `rate_window` is a window function that partitions the data by fingerprint and orders it by timestamp.
// We want to calculate the rate of change for each time series, so we partition the data by fingerprint.
//
// The `increase` function is similar to the `rate` function, except that it does not divide by the time interval.
const (
rateWithoutNegative = `If((per_series_value - lagInFrame(per_series_value, 1, 0) OVER rate_window) < 0, nan, If((ts - lagInFrame(ts, 1, toDate('1970-01-01')) OVER rate_window) >= 86400, nan, (per_series_value - lagInFrame(per_series_value, 1, 0) OVER rate_window) / (ts - lagInFrame(ts, 1, toDate('1970-01-01')) OVER rate_window)))`
increaseWithoutNegative = `If((per_series_value - lagInFrame(per_series_value, 1, 0) OVER rate_window) < 0, nan, If((ts - lagInFrame(ts, 1, toDate('1970-01-01')) OVER rate_window) >= 86400, nan, (per_series_value - lagInFrame(per_series_value, 1, 0) OVER rate_window)))`
)
// prepareTimeAggregationSubQueryTimeSeries prepares the sub-query to be used for temporal aggregation
// of time series data
// The following example illustrates how the sub-query is used to calculate the sume of values for each
// time series in a 15 seconds interval:
// ```
// timestamp 01.00 01.05 01.10 01.15 01.20 01.25 01.30 01.35 01.40
// +------+------+------+------+------+------+------+------+------+
// | | | | | | | | | |
// | v1 | v2 | v3 | v4 | v5 | v6 | v7 | v8 | v9 |
// | | | | | | | | | |
// +------+------+------+------+------+------+------+------+------+
// | | | | | | | | |
// | | | | | | | | |
// | | |
// +------+ +------+ +------+
// | v1+ | | v4+ | | v7+ |
// | v2+ | | v5+ | | v8+ |
// | v3 | | v6 | | v9 |
// +------+ +------+ +------+
// 01.00 01.15 01.30
// ```
// Calculating the rate/increase involves an additional step. We first calculate the maximum value for each time series
// in a 15 seconds interval. Then, we calculate the difference between the current maximum value and the previous
// maximum value
// The following example illustrates how the sub-query is used to calculate the rate of change for each time series
// in a 15 seconds interval:
// ```
// timestamp 01.00 01.05 01.10 01.15 01.20 01.25 01.30 01.35 01.40
// +------+------+------+------+------+------+------+------+------+
// | | | | | | | | | |
// | v1 | v2 | v3 | v4 | v5 | v6 | v7 | v8 | v9 |
// | | | | | | | | | |
// +------+------+------+------+------+------+------+------+------+
// | | | | | | | | |
// | | | | | | | | |
// | | |
// +------+ +------+ +------+
// max(| v1, | max(| v4, | max(| v7, |
// | v2, | | v5, | | v8, |
// | v3 |) | v6 |) | v9 |)
// +------+ +------+ +------+
// 01.00 01.15 01.30
// +-------+ +--------+
// | V6-V2 | | V9-V6 |
// | | | |
// | | | |
// +------+ +--------+
// 01.00 01.15
// ```
// The rate of change is calculated as (Vy - Vx) / (Ty - Tx) where Vx and Vy are the values at time Tx and Ty respectively.
// In an ideal scenario, the last value of each interval could be used to calculate the rate of change. Instead, we use
// the maximum value of each interval to calculate the rate of change. This is because any process restart can cause the
// value to be reset to 0. This will produce an inaccurate result. The max is the best approximation we can get.
// We don't expect the process to restart very often, so this should be a good approximation.
func prepareTimeAggregationSubQuery(start, end, step int64, mq *v3.BuilderQuery) (string, error) {
var subQuery string
timeSeriesSubQuery, err := helpers.PrepareTimeseriesFilterQuery(start, end, mq)
if err != nil {
return "", err
}
samplesTableFilter := fmt.Sprintf("metric_name = %s AND unix_milli >= %d AND unix_milli < %d", utils.ClickHouseFormattedValue(mq.AggregateAttribute.Key), start, end)
// Select the aggregate value for interval
queryTmpl :=
"SELECT fingerprint, %s" +
" toStartOfInterval(toDateTime(intDiv(unix_milli, 1000)), INTERVAL %d SECOND) as ts," +
" %s as per_series_value" +
" FROM " + constants.SIGNOZ_METRIC_DBNAME + "." + constants.SIGNOZ_SAMPLES_V4_TABLENAME +
" INNER JOIN" +
" (%s) as filtered_time_series" +
" USING fingerprint" +
" WHERE " + samplesTableFilter +
" GROUP BY fingerprint, ts" +
" ORDER BY fingerprint, ts"
selectLabelsAny := helpers.SelectLabelsAny(mq.GroupBy)
selectLabels := helpers.SelectLabels(mq.GroupBy)
switch mq.TimeAggregation {
case v3.TimeAggregationAvg:
op := "avg(value)"
subQuery = fmt.Sprintf(queryTmpl, selectLabelsAny, step, op, timeSeriesSubQuery)
case v3.TimeAggregationSum:
op := "sum(value)"
subQuery = fmt.Sprintf(queryTmpl, selectLabelsAny, step, op, timeSeriesSubQuery)
case v3.TimeAggregationMin:
op := "min(value)"
subQuery = fmt.Sprintf(queryTmpl, selectLabelsAny, step, op, timeSeriesSubQuery)
case v3.TimeAggregationMax:
op := "max(value)"
subQuery = fmt.Sprintf(queryTmpl, selectLabelsAny, step, op, timeSeriesSubQuery)
case v3.TimeAggregationCount:
op := "count(value)"
subQuery = fmt.Sprintf(queryTmpl, selectLabelsAny, step, op, timeSeriesSubQuery)
case v3.TimeAggregationCountDistinct:
op := "count(distinct(value))"
subQuery = fmt.Sprintf(queryTmpl, selectLabelsAny, step, op, timeSeriesSubQuery)
case v3.TimeAggregationAnyLast:
op := "anyLast(value)"
subQuery = fmt.Sprintf(queryTmpl, selectLabelsAny, step, op, timeSeriesSubQuery)
case v3.TimeAggregationRate:
op := "max(value)"
innerSubQuery := fmt.Sprintf(queryTmpl, selectLabelsAny, step, op, timeSeriesSubQuery)
rateQueryTmpl :=
"SELECT %s ts, " + rateWithoutNegative +
" as per_series_value FROM (%s) WINDOW rate_window as (PARTITION BY fingerprint ORDER BY fingerprint, ts)"
subQuery = fmt.Sprintf(rateQueryTmpl, selectLabels, innerSubQuery)
case v3.TimeAggregationIncrease:
op := "max(value)"
innerSubQuery := fmt.Sprintf(queryTmpl, selectLabelsAny, step, op, timeSeriesSubQuery)
rateQueryTmpl :=
"SELECT %s ts, " + increaseWithoutNegative +
" as per_series_value FROM (%s) WINDOW rate_window as (PARTITION BY fingerprint ORDER BY fingerprint, ts)"
subQuery = fmt.Sprintf(rateQueryTmpl, selectLabels, innerSubQuery)
}
return subQuery, nil
}
// PrepareMetricQueryCumulativeTimeSeries prepares the query to be used for fetching metrics
func PrepareMetricQueryCumulativeTimeSeries(start, end, step int64, mq *v3.BuilderQuery) (string, error) {
var query string
temporalAggSubQuery, err := prepareTimeAggregationSubQuery(start, end, step, mq)
if err != nil {
return "", err
}
groupBy := helpers.GroupingSetsByAttributeKeyTags(mq.GroupBy...)
orderBy := helpers.OrderByAttributeKeyTags(mq.OrderBy, mq.GroupBy)
selectLabels := helpers.GroupByAttributeKeyTags(mq.GroupBy...)
queryTmpl :=
"SELECT %s," +
" %s as value" +
" FROM (%s)" +
" WHERE isNaN(per_series_value) = 0" +
" GROUP BY %s" +
" ORDER BY %s"
switch mq.SpaceAggregation {
case v3.SpaceAggregationAvg:
op := "avg(per_series_value)"
query = fmt.Sprintf(queryTmpl, selectLabels, op, temporalAggSubQuery, groupBy, orderBy)
case v3.SpaceAggregationSum:
op := "sum(per_series_value)"
query = fmt.Sprintf(queryTmpl, selectLabels, op, temporalAggSubQuery, groupBy, orderBy)
case v3.SpaceAggregationMin:
op := "min(per_series_value)"
query = fmt.Sprintf(queryTmpl, selectLabels, op, temporalAggSubQuery, groupBy, orderBy)
case v3.SpaceAggregationMax:
op := "max(per_series_value)"
query = fmt.Sprintf(queryTmpl, selectLabels, op, temporalAggSubQuery, groupBy, orderBy)
case v3.SpaceAggregationCount:
op := "count(per_series_value)"
query = fmt.Sprintf(queryTmpl, selectLabels, op, temporalAggSubQuery, groupBy, orderBy)
}
return query, nil
}