238 lines
6.8 KiB
Go
238 lines
6.8 KiB
Go
package main
|
|
|
|
import (
|
|
"bufio"
|
|
"fmt"
|
|
"math"
|
|
"os"
|
|
"sort"
|
|
"strconv"
|
|
"strings"
|
|
)
|
|
|
|
// NOTE: executable must be built with target OS and architecture set to linux/amd64
|
|
// env GOOS=linux GOARCH=amd64 go build -o histogramQuantile histogramQuantile.go
|
|
|
|
// The following code is adapted from the following source:
|
|
// https://github.com/prometheus/prometheus/blob/main/promql/quantile.go
|
|
|
|
type bucket struct {
|
|
upperBound float64
|
|
count float64
|
|
}
|
|
|
|
// buckets implements sort.Interface.
|
|
type buckets []bucket
|
|
|
|
func (b buckets) Len() int { return len(b) }
|
|
func (b buckets) Swap(i, j int) { b[i], b[j] = b[j], b[i] }
|
|
func (b buckets) Less(i, j int) bool { return b[i].upperBound < b[j].upperBound }
|
|
|
|
// bucketQuantile calculates the quantile 'q' based on the given buckets. The
|
|
// buckets will be sorted by upperBound by this function (i.e. no sorting
|
|
// needed before calling this function). The quantile value is interpolated
|
|
// assuming a linear distribution within a bucket. However, if the quantile
|
|
// falls into the highest bucket, the upper bound of the 2nd highest bucket is
|
|
// returned. A natural lower bound of 0 is assumed if the upper bound of the
|
|
// lowest bucket is greater 0. In that case, interpolation in the lowest bucket
|
|
// happens linearly between 0 and the upper bound of the lowest bucket.
|
|
// However, if the lowest bucket has an upper bound less or equal 0, this upper
|
|
// bound is returned if the quantile falls into the lowest bucket.
|
|
//
|
|
// There are a number of special cases (once we have a way to report errors
|
|
// happening during evaluations of AST functions, we should report those
|
|
// explicitly):
|
|
//
|
|
// If 'buckets' has 0 observations, NaN is returned.
|
|
//
|
|
// If 'buckets' has fewer than 2 elements, NaN is returned.
|
|
//
|
|
// If the highest bucket is not +Inf, NaN is returned.
|
|
//
|
|
// If q==NaN, NaN is returned.
|
|
//
|
|
// If q<0, -Inf is returned.
|
|
//
|
|
// If q>1, +Inf is returned.
|
|
func bucketQuantile(q float64, buckets buckets) float64 {
|
|
if math.IsNaN(q) {
|
|
return math.NaN()
|
|
}
|
|
if q < 0 {
|
|
return math.Inf(-1)
|
|
}
|
|
if q > 1 {
|
|
return math.Inf(+1)
|
|
}
|
|
sort.Sort(buckets)
|
|
if !math.IsInf(buckets[len(buckets)-1].upperBound, +1) {
|
|
return math.NaN()
|
|
}
|
|
|
|
buckets = coalesceBuckets(buckets)
|
|
ensureMonotonic(buckets)
|
|
|
|
if len(buckets) < 2 {
|
|
return math.NaN()
|
|
}
|
|
observations := buckets[len(buckets)-1].count
|
|
if observations == 0 {
|
|
return math.NaN()
|
|
}
|
|
rank := q * observations
|
|
b := sort.Search(len(buckets)-1, func(i int) bool { return buckets[i].count >= rank })
|
|
|
|
if b == len(buckets)-1 {
|
|
return buckets[len(buckets)-2].upperBound
|
|
}
|
|
if b == 0 && buckets[0].upperBound <= 0 {
|
|
return buckets[0].upperBound
|
|
}
|
|
var (
|
|
bucketStart float64
|
|
bucketEnd = buckets[b].upperBound
|
|
count = buckets[b].count
|
|
)
|
|
if b > 0 {
|
|
bucketStart = buckets[b-1].upperBound
|
|
count -= buckets[b-1].count
|
|
rank -= buckets[b-1].count
|
|
}
|
|
return bucketStart + (bucketEnd-bucketStart)*(rank/count)
|
|
}
|
|
|
|
// coalesceBuckets merges buckets with the same upper bound.
|
|
//
|
|
// The input buckets must be sorted.
|
|
func coalesceBuckets(buckets buckets) buckets {
|
|
last := buckets[0]
|
|
i := 0
|
|
for _, b := range buckets[1:] {
|
|
if b.upperBound == last.upperBound {
|
|
last.count += b.count
|
|
} else {
|
|
buckets[i] = last
|
|
last = b
|
|
i++
|
|
}
|
|
}
|
|
buckets[i] = last
|
|
return buckets[:i+1]
|
|
}
|
|
|
|
// The assumption that bucket counts increase monotonically with increasing
|
|
// upperBound may be violated during:
|
|
//
|
|
// * Recording rule evaluation of histogram_quantile, especially when rate()
|
|
// has been applied to the underlying bucket timeseries.
|
|
// * Evaluation of histogram_quantile computed over federated bucket
|
|
// timeseries, especially when rate() has been applied.
|
|
//
|
|
// This is because scraped data is not made available to rule evaluation or
|
|
// federation atomically, so some buckets are computed with data from the
|
|
// most recent scrapes, but the other buckets are missing data from the most
|
|
// recent scrape.
|
|
//
|
|
// Monotonicity is usually guaranteed because if a bucket with upper bound
|
|
// u1 has count c1, then any bucket with a higher upper bound u > u1 must
|
|
// have counted all c1 observations and perhaps more, so that c >= c1.
|
|
//
|
|
// Randomly interspersed partial sampling breaks that guarantee, and rate()
|
|
// exacerbates it. Specifically, suppose bucket le=1000 has a count of 10 from
|
|
// 4 samples but the bucket with le=2000 has a count of 7 from 3 samples. The
|
|
// monotonicity is broken. It is exacerbated by rate() because under normal
|
|
// operation, cumulative counting of buckets will cause the bucket counts to
|
|
// diverge such that small differences from missing samples are not a problem.
|
|
// rate() removes this divergence.)
|
|
//
|
|
// bucketQuantile depends on that monotonicity to do a binary search for the
|
|
// bucket with the φ-quantile count, so breaking the monotonicity
|
|
// guarantee causes bucketQuantile() to return undefined (nonsense) results.
|
|
//
|
|
// As a somewhat hacky solution until ingestion is atomic per scrape, we
|
|
// calculate the "envelope" of the histogram buckets, essentially removing
|
|
// any decreases in the count between successive buckets.
|
|
|
|
func ensureMonotonic(buckets buckets) {
|
|
max := buckets[0].count
|
|
for i := 1; i < len(buckets); i++ {
|
|
switch {
|
|
case buckets[i].count > max:
|
|
max = buckets[i].count
|
|
case buckets[i].count < max:
|
|
buckets[i].count = max
|
|
}
|
|
}
|
|
}
|
|
|
|
// End of copied code.
|
|
|
|
func readLines() []string {
|
|
r := bufio.NewReader(os.Stdin)
|
|
bytes := []byte{}
|
|
lines := []string{}
|
|
for {
|
|
line, isPrefix, err := r.ReadLine()
|
|
if err != nil {
|
|
break
|
|
}
|
|
bytes = append(bytes, line...)
|
|
if !isPrefix {
|
|
str := strings.TrimSpace(string(bytes))
|
|
if len(str) > 0 {
|
|
lines = append(lines, str)
|
|
bytes = []byte{}
|
|
}
|
|
}
|
|
}
|
|
if len(bytes) > 0 {
|
|
lines = append(lines, string(bytes))
|
|
}
|
|
return lines
|
|
}
|
|
|
|
func main() {
|
|
lines := readLines()
|
|
for _, text := range lines {
|
|
// Example input
|
|
// "[1, 2, 4, 8, 16]", "[1, 5, 8, 10, 14]", 0.9"
|
|
// bounds - counts - quantile
|
|
parts := strings.Split(text, "\",")
|
|
|
|
var bucketNumbers []float64
|
|
// Strip the ends with square brackets
|
|
text = parts[0][2 : len(parts[0])-1]
|
|
// Parse the bucket bounds
|
|
for _, num := range strings.Split(text, ",") {
|
|
num = strings.TrimSpace(num)
|
|
number, err := strconv.ParseFloat(num, 64)
|
|
if err == nil {
|
|
bucketNumbers = append(bucketNumbers, number)
|
|
}
|
|
}
|
|
|
|
var bucketCounts []float64
|
|
// Strip the ends with square brackets
|
|
text = parts[1][2 : len(parts[1])-1]
|
|
// Parse the bucket counts
|
|
for _, num := range strings.Split(text, ",") {
|
|
num = strings.TrimSpace(num)
|
|
number, err := strconv.ParseFloat(num, 64)
|
|
if err == nil {
|
|
bucketCounts = append(bucketCounts, number)
|
|
}
|
|
}
|
|
|
|
// Parse the quantile
|
|
q, err := strconv.ParseFloat(parts[2], 64)
|
|
var b buckets
|
|
|
|
if err == nil {
|
|
for i := 0; i < len(bucketNumbers); i++ {
|
|
b = append(b, bucket{upperBound: bucketNumbers[i], count: bucketCounts[i]})
|
|
}
|
|
}
|
|
fmt.Println(bucketQuantile(q, b))
|
|
}
|
|
}
|